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Abstract. Akey impediment towardsmaturingmicroservice architecture concep-
tions is the uncertainty about what it means to design fine-grained functionality for
microservices. Under a traditional service-oriented architecture (SOA), the unit
of functionality for software components concerns individual business domain
objects and encapsulated operations, enabling desirable architectural properties
such as high cohesion and loose-coupling of its components. However, at present
it is not clear how this SOA design strategy should be refined for microservices
nor, more generally, how design considerations for different degrees of granular-
ity apply, in a consistent and systematic way, for large SOA systems to smaller
microservices. This paper proposesmicroservice patterns, as a contribution to the
maturity of microservice architectures, through the refinement of the functional
structure of SOAs. The patterns are derived by considering the splitting of busi-
ness object (BO) operations and salient types of BO relationships, which influence
software structure (as captured in UML): object association, exclusive contain-
ment, inclusive containment and specialisation (i.e., subtyping). The viability of
the patterns for evolving large SOA systems into microservices is demonstrated
through automated microservices discovery algorithms, on two open-source en-
terprise systems used widely in practice, Dolibarr and SugarCRM.
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1 Introduction
Microservice architectures are the latest development of distributed systems, evolving
service-oriented architectures (SOAs) to enable high-performance, Internet-scale appli-
cations. Seen through the software transformations of NetflixTM, TwitterTM, eBayTM
and AmazonTM among others, microservices are fine-grained software components
which support individualised functionality of businesses, manage local and synchro-
nised databases, and communicate via lightweight protocols.
To date, different ways of understanding microservices have emerged, notably from

reported Internet player experiences [1] and more general software practitioner refer-
ences [2, 3]. The agile development community emphasises microservices as a unit of
continuous development, which can be separately developed, deployed, composed, and
ultimately accrued into a collective software solution, that can provide high scalabil-
ity, availability (replication), and execution integrity, when compared with monolithic
systems. However, these non-functional properties are insufficient for a full understand-
ing of a microservice architecture, which also requires precise insights concerning the



functional structure of software in terms of software components, relationships, com-
posability and deployment constraints.
Domain-driven design principles of software [4] have been indispensable for under-

standing the functional structure of software components in SOA, aligning it with the
functionality of business domains. In particular, SOA components are structured to man-
age distinct business objects (BOs) of domains (e.g., order, customer, payment), contain-
ing encapsulated CRUD (create, read, update, and delete) operations of the objects [5].
Designed this way, SOA components can exhibit high intra-functional dependencies,
(i.e., high cohesion) and low inter-functional dependencies with other components, (i.e.,
low coupling), allowing a systematic composition for larger components and applica-
tions. Emerging principles and patterns for microservices [6], which likewise appeal
to domain-driven design, recommend decomposing BOs for support of fine-grained
functionality (e.g., from an order to order entry, order tracking and order delivery) [2].
However, by appealing to business design considerations only, the implications for a
precise functional structure required of a microservice architecture are left open.
In this paper we consolidate emerging developments of microservices towards an

architecture style that is refined from the functional structure of SOAs (background in
Section 2). Specifically, we present patterns for microservices (in Section 3), aligning, as
done for the SOA paradigm, software components with BOs. To address the requirement
for refined decomposition of BOs, the patterns support the splitting of BO operations
into microservices (i.e., subsets of business object operations). In addition, our patterns
address overall architectural coherence, and how microservices can be related to each
other and be potentially co-located in Cloud containers, given BO intra- and inter-
relationships. Four importantBO relationships that pertain to software component design
are considered (as expressed in the widely used Unified Modelling Language) [7]:
BO association (relationship), BO exclusive containment (composition), BO inclusive
containment (aggregation) and subtyping (specialisation). Taken together, we claim
a crucial first step towards maturing the field of microservices through microservice
patterns, in a similar vein to other IT fields [8–10].
While presenting the patterns for “greenfield” (new) development of software, we also

demonstrate the value of the patterns for “brownfield” (evolving) developments, whereby
the patterns are used to identify prospectivemicroservices from themost prominent form
of software used in businesses and utilising SOAs, i.e., enterprise systems (algorithms
and validation are presented in Section 4 and Section 5). Related works (Section 6) and
a conclusion (Section 7) are provided towards the end of the paper.

2 Systems Architecture Context
This section describes a systems architecture context in which microservices operate
and is relevant for our definition of the microservice patterns (in Section 3). The context
assumes that microservices are aligned with larger SOA-based systems such that they
are either refactored parts of the systems or new designs whose processes are connected
to backend SOA systems. Enterprise systems are used as exemplar SOA system, given
their widespread use, and the examples we use are drawn from this software domain.
As depicted in Fig. 1, an enterprise system consists of self-contained modules drawn
from different subsystems (e.g., production management), and is deployed on a “back-
end” platform. Modules consist of a set of functions (e.g., software classes) managing



one or more BOs through CRUD operations. For example ‘Software Module1’ consists
of several functions with operations manipulating the data related to ‘Shipment’, ‘Ele-
ment’ and ‘User’ BOs in the database system. In this case, we have illustrated reduced
cohesion and increased coupling, as the modules manage multiple BOs, unlike the de-
sirable design of SOA components which should manage a single BO [7]. Through
the database, different types of BO relationships are illustrated. These are: subtyping,
where ‘At-Store Reclamation’ and ‘Generic Transport’ are specialised from ‘Shipment’;
exclusive containment, where ‘Shipment’ is exclusively made up of ‘Element’ and con-
trols its creation/deletion; inclusive containment, where ‘Order’ is inclusively made up
of ‘Product’ but does not control its creation/deletion; and basic associations such as a
‘User’ has an ‘Order’.
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Fig. 1. Enterprise System Integrated with a Microservice system.

Through themicroservice system (right-hand side of Fig. 1) alignedwith the enterprise
system, individual microservices, distributed in Cloud containers, have been introduced
(in this case, refactored from the ES). They support subsets of individual BO operations.
For example,Microservice1 andMicroservice2 are responsible for subsets of ‘Shipment’
and ‘Element’ operations, respectively. In this example, the microservices are co-located
on the same container because of the related BO exclusive containment relationship,
which results in a dedicated coupling between them. The execution of operations across
the enterprise and microservice systems are coordinated through business processes,
which means that invocations of BO operations on the microservices trigger operations
on enterprise system functions involving the same BOs and potentially related BOs
through orchestration or choreography [11]. As per microservice systems, BO data
is synchronised across databases managed by microservices and enterprise systems
periodically.
Given this systems architecture context, we provide the following formalisation, which

is used to define the microservice patterns (in Section 3) and pattern-based microser-
vice discovery from enterprise systems (in Section 4). For this, we reuse the abstract
representation of an enterprise system that we introduced previously [12].



Let I and O be input types and output types, respectively. Let OP, B, T and A
be, respectively, a universe of operations, BOs, database tables and attributes. We
characterize a database table t ∈ T by a collection of attributes, i.e., t ⊆ A, while a
business object b ∈ B is defined as a collection of database tables, i.e., b ⊆ T.
An operation op, either of an enterprise or microservice system, is given as a triple
(I,O,T), where I ∈ I∗ is a sequence of input types the operation expects for input,
O ∈ O∗ is a sequence of output types the operation produces as output, and T ⊆ T is a
set of database tables the operation accesses, i.e., either reads or augments.3
We define an enterprise system, or more precisely its abstract representation, as a

finite automaton.

Definition 2.1 (Enterprise system, ES)
An enterprise system is a 5-tuple (Q,Λ, δ, q0, A), where Q is a finite nonempty set of
states,Λ ⊆ OP is a set of operations, such that Q andΛ are disjoint, δ : Q×(Λ∪{τ}) →
P(Q) is the transition function, where τ a is a special silent operation such that τ < Q∪Λ,
q0 ∈ Q is the start state, and A ⊆ Q is the set of accept states.4 y

We refer to computations of an enterprise system as processes, or process instances of
the system. Finally, a microservice system is defined as follows.

Definition 2.2 (Microservice system, MS)
LetC andM be a universe of containers and a universe ofMSs, repsectively. AMS is a 4-
tuple (C, M, σ, µ), where C ⊆ C is a set of containers, M ⊆ M is a set of microservices,
σ : C → P(M) \ ∅ is a deployment function that maps each container c ∈ C onto a
non-empty set of microservices σ(c) that are deployed on c, and µ : M → P(OP)\∅ is a
microservice definition function that maps each microservice m ∈ M onto a non-empty
set of operations.

3 Microservices Patterns
We present four Microservice (MS) patterns related to intra- and inter-BO relationships
that form important design considerations for software components [7]. As detailed
above, each pattern identifies amicroservice as a collection of operations that manipulate
data related to a single BO.

Pattern 3.1 (Microservice Subtyping)
A microservice is used to manage subsets of operations related to a BO subtype. Since
there can be multiple BO subtypes of a supertype, a MS can apply to any given subtype,
at any level of a subtype hierarchy and a subset of operations related to that subtype.
More formally, let b1, b2 ∈ B be two BOs such that b2 is a subtype of b1, at any level of
the subtype hierarchy. A MS m reflects the microservice subtype pattern for b2 and its
supertype b1, iff for each operation (I,O,T) ∈ µ(m) it holds that b2 ∩ T , ∅. Support
of the other operations that relate to b2 not covered by m, i.e., (I,O,T) < µ(m) where
b2 ∩ T , ∅, is subject to systems architecture considerations, inclusive of the ES and
other MSs. We distinguish two variants of the subtype pattern:

3 A∗ denotes the application of the Kleene star operation to set A. 4 Given a set A, by P(A) we
denote the powerset of A.



◦ Data population partition: MS m reflects the data population partition variant of
the subtype pattern iff b1 ⊆

⋃
(I,O,T ) ∈ µ(m) T . That is, m involves operations over all

the tables b1 has access to.
◦ Data typing partition:MS m reflects the data typing partition variant of the subtype
pattern iff (i) b1 ⊆

⋃
(I,O,T ) ∈ µ(m) T and (ii) for every BO b3 , b2, such that

b3 is a subtype of b1 at the same hierarchy level as b2, it holds that (b3 \ b1) ∩
(
⋃
(I,O,T ) ∈ µ(m) T) = ∅. That is, m reflects the data population partition and, in

addition, does not involve operations over the tables that are specific to other subtypes
of b1 at the same level of the subtype hierarchy as b2.

Examples: As depicted in Fig. 1, BO ‘Shipment’ has two subtypes ‘At-Store Reclama-
tion’ and ‘Generic Transport’ that have dedicated attributes storeAddress and courier-
Number, respectively, and common attributes id, productName, and amount. Partitioning
of the BOs occurs at the attribute level, to which the MS subtyping variant, data typing
partition, can be applied (see the MS system in Fig. 1). If, on the other hand, a single
attribute in shipment BO is used to indicate whether it is an ‘At-Store Reclamation’ or a
‘Generic Transport’, partitioning of the BOs occurs at the data level, to which the data
population partition variant can be applied.
Problem: Developing a single microservice to manage subtype BOs will result in
services which do not follow the single responsibility rule [2] in MS development. Fur-
thermore, this can result in increased request processing time due to the fact that a request
related to multiple subtypes are processed through the same service endpoint. Conse-
quently, the unavailability of a single service endpoint may result in the unavailability
of all subtype services.
Solution: The pattern addresses selective implementation throughMSs of BO subtypes,
with BOs abstracted over database tables. Implementations on the database level can
vary, ranging from a single table storing the supertype and subtypes of BOs to individual
tables per supertype and each subtype, to combinations of both. This in turn can give
rise a considerable set of CRUD operations related to the supertype and each subtype
of the BO, potentially resulting in software inconsistencies as to which operations are
provided as part of the different MSs. Such a problem is compounded when the structure
of BOs change, resulting in changes to the different operations. A way of handling is
to include a standard set of operations for handling all the supertype and subtypes and
allowing for a qualification (e.g. a special parameter) when the operations are called
to indicate which subtype is required. Each operation then results in the calling of a
data handling MS which contains logic for determining which parameters are required
for each different subtype. This way, the BO attribute sets are mapped to different BO
subtypes in the same, reusable core MS.

Pattern 3.2 (Microservice Exclusive Containment)
Description: Microservices manage subsets of operations of BOs which have an ex-
clusive containment relationship. One MS relates to the parent (or composite) BO and
other MSs manage child BOs, such that the existence (i.e., create, update and delete)
of a child BO depends on the existence of the parent BO. MSs should be co-located
to run on the same (execution) container, given their tight-coupling resulting from the
existence of the corresponding parent and child BOs.



More formally, let b1, b2 ∈ B be two BOs such that b2 is exclusively contained in b1.
MSs m1 and m2 reflect the exclusive containment pattern for b1 and b2 iff:
◦ for each operation (I,O,T) ∈ µ(m1) it holds that b1 ∩ T , ∅,
◦ for each operation (I,O,T) ∈ µ(m2) it holds that b2 ∩ T , ∅,
◦ m1 and m2 includes object existence operations related to BOs of type b1 and b2
respectively,
◦ BOs of type b2 are created only after the corresponding BO of type b1 is created,
◦ a BO of type b1 is deleted only after all the corresponding BOs of type b2 are
deleted, and
◦ updates of a BO of type b2 always come after that BO is created.
We distinguish two variant of exclusive containment pattern:
◦ Mandatory exclusive containment: The invocation of create and delete operation
related to the parent BO b1 requires that the corresponding child BO’s b2 operations
(I,O,T) must also be done simultaneously, as part of the same process instance.
◦ Optional exclusive containment: The invocation of create and delete operation
related to the parent BO b1 does not requires that the corresponding child BO’s b2
operations (I,O,T) to be invoked.

Examples:When considering a ‘Shipment’ BO, as depicted in Fig. 1, the ‘Element’ BO
is contained in the ‘Shipment’ and the creation of the ‘Shipment’ BO always requires
creating one or more ‘Element’ BOs. Similarly, deleting the ‘Shipment’ BO requires
deleting the ‘Element’ BO, resulting in mandatory exclusive containment. As such, the
mandatory exclusive containment variant can be applied when designing MSs (see the
microservice system in Fig. 1). If, on the other hand, creation of a ‘Shipment’ does not
always require having an ‘Element’ (i.e., ‘Shipment’ and ‘Element’ have a zero or more
relationship) then optional exclusive containment can be applied.
Problem: Developing separate microservices contained in separate microservice con-
tainers to manage exclusively contained BOs may result in increased communication
overhead between services. In addition, separating the data related to parent BOs and
child BOs into separate microservices may result in data inconsistencies and unavail-
ability.
Solution: Given two variants of exclusive containment the development of the MS
should be done while checking the last three conditions against all the processes the ES
supports as below.
◦ Mandatory exclusive containment: This can be supported in three ways. Firstly,
through the MS managing the parent object (i.e., m1), the parent object b1 is created
and invocations aremade on the childMSs (i.e,m2) to create the child objects b2 (i.e.,
concurrently). Secondly, through a process context, the parent object’s b1 creation
using the parent MS m1 and the child objects’ b2 creations using the child MSs
m2, occur in the same process. The process allows the latter to occur at some point
following the former (i.e., eventually) but before the end of the process instance.
Thirdly, if there are multiple instances of a child object b2, then the instance after the
first can be created through an update operation on the child MS m2. In the case of
object deletion, through the MS managing the parent object (i.e., m1), invocations
are made on the child MSs (i.e., m2) to delete any child object b2 as a part of parent’s
deletion process (i.e., concurrently) and to delete the parent object b1.



◦ Optional exclusive containment: The same create and delete mechanisms described
for mandatory inclusive containment (refer Pattern 3.3) also apply here, with the ex-
ception that the creation and deletion of child objects b2 and therefore corresponding
invocations of child MSs m2 are optional.

Pattern 3.3 (Microservice Inclusive Containment)
Description: Microservices manage subsets of operations of BOs which have an in-
clusive containment relationship. One MS relates to the parent (or aggregate) BO and
other MSs manage child BOs, such that the existence of children does not depend on the
parent’s existence, i.e., the children exist independently but are used in the context of
the parent. No dedicated tight-coupling, as such, exists between the MSs operating on
parent and children objects, and therefore there is no requirement to strictly co-locate
them for execution.
More formally, let b1, b2 ∈ B be two BOs such that b2 is inclusively contained in b1.
MSs m1 and m2 reflect the inclusive containment pattern for b1 and b2 iff:
◦ for each operation (I,O,T) ∈ µ(m1) it holds that b1 ∩ T , ∅,
◦ for each operation (I,O,T) ∈ µ(m2) it holds that b2 ∩ T , ∅,
◦ m1 and m2 includes create, read, update and delete operations related to BOs of type

b1 and b2 respectively,
◦ m1 contains an operation for reading BOs of type b2, and
◦ each time a BO of type b1 is created, it reads a BO of type b2.

Variants:
◦ Mandatory inclusive containment: The invocation of create and delete operations
related to BO b1 of parent MS m1 requires that the corresponding child BOs b2
must also exist and be used in the parent’s aggregation, despite their independent
existence. As such parent MS m1 will call child MS m2 for information retrieval.
◦ Optional inclusive containment: The invocation of create and delete operations
related to BO b1 of parent MS m1 does not require invocation of operations related
to the child MS m2 corresponding to child BOs b2.

Examples: The ‘Order’ BO as depicted in Fig. 1 has an inclusive containment relation-
ship with the ‘Product’ BO, because an order should contain a list of products which
are ordered, which results in a mandatory inclusive containment relationship. As such
the mandatory inclusive containment variant can be applied to design MSs. If, on the
other hand, creating an ‘Order’ is not always require creating a ‘Product’ (i.e, ‘Order’
and ‘Product’ have a zero or more relationship), then the optional inclusive containment
variant can be applied to design MSs.

Problem: Developing a single microservice to manage inclusively contained BOs will
result in bigger services which does not follow the single responsibility rule in MS
development and can result in difficulty of maintenance due to the fact that it is respon-
sible for the operations related to multiple BOs. Furthermore, this can result in service
unavailability of multiple BOs if the hosted microservice fails. When considering the
scalability aspect, this will result in reduced scalability due to the fact that it requires
more resources such as memory and CPU to provide the services.



Solution: Given two variants of inclusive containment the development of the MSs
should be done while checking the last three conditions against all the processes the ES
supports as below.
◦ Mandatory inclusive containment: When the parent MS m1’s create operations
are invoked, read operations are invoked on the child MS m2 and corresponding
object references are held in the parent MS m1. These references can be created
concurrently (as part of the parent’s create operation) or sometime before the end
of the process instance (as part of a process context which includes the creation of
parent object b1 and child object b2 references). If there are multiple instances of a
specific child object b2, its object reference is used to update the list of instances in
the parent aggregate using reads on the childMSm2.When the parentMSm1’s delete
operations are invoked, object references to the child BOs b2 are thereby deleted.
◦ Optional inclusive containment: The same create and delete mechanisms described
for mandatory inclusive containment also apply here, with the exception that the
creation and deletion of child object b2 references the parent b1 and therefore
corresponding invocations of child MS m2 existence operations are optional.

Pattern 3.4 (Microservice Association)
Description: Two microservices manage operations of BOs which have an association
relationship. One MS relates to one BO and the other MS manages another BO, such
that the existence of both BOs are independent of each other. As there is no dedicated
tight-coupling, there is no requirement to strictly co-locate them.
More formally, let b1, b2 ∈ B be two BOs in an association relationship. MSs m1 and m2
reflect the association pattern for b1 and b2 iff:
◦ for each operation (I,O,T) ∈ µ(m1) it holds that b1 ∩ T , ∅,
◦ for each operation (I,O,T) ∈ µ(m2) it holds that b2 ∩ T , ∅,
◦ m1 includes operations over BOs of type b1,
◦ m2 includes operations over BOs of type b2, and
◦ m1 contains operations which reference m2 for reading BOs of type b2.

Examples: ‘Order’ and ‘User’ BOs can have an association relationship as depicted
in Fig. 1. In this situation one ‘User’ can have one or more ‘Orders’ related to it. The
create, read, update, and delete operations on the values related to each BO can occur
independently of each other even though they are related. However, some create or
update operations related to ‘Order’ might require the ‘User’ information which leads
to a read execution of the BO ‘User’.
Problem: Developing a single microservice to manage associated BOs will result in
bigger services which result in difficulty of maintenance due to the fact that it is respon-
sible for the operations related to multiple BOs. Furthermore, this can result in service
unavailability of multiple BOs if the hosted microservice fails. When considering the
scalability aspect, this will result in reduce scalability due to the fact that it requires
more resources such as memory and CPU to provide the services.
Solution: Develop separate MSs m1 and m2 to manage associate BOs b1 and b2, such
that the CRUD operation of one MS may invoke CRUD operations related to the other
MS.



4 Utilisation of MS Patterns in ESs Re-engineering

In this section, we demonstrate the added value of using our microservice patterns in the
context of re-engineering parts of enterprise systems asmicroservices (i.e., “brownfield”
development) (refer to Fig. 2).
In the first step, we identify the BOs in the given enterprise system by evaluating

the SQL queries and relationships between database tables according to the method de-
scribed by Nooijen et al. [13]. In the second step, we analyse the database tables and their
cardinalities in order to derive the mandatory and optional containment relationships. In
the third step, we derive the BO relationships based on the BOs derived from step one,
cardinalities derived from step two and system execution logs, as detailed in Section 4.1.
In the fourth step, we generate the call graphs based on the execution logs which were
generated in the previous step. Finally, in the fifth step, all the structural and behavioural
details generated are provided to an optimization algorithm (Non-dominated Sorting
Genetic Algorithm (NSGA II)) which suggests the best splitting of subset of operations
related to BOs, by considering the four major factors namely, operations’ relationships
with BOs, BO relationships, execution frequencies of operations and their execution
patterns.
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Fig. 2. Overview of the microservice discovery approach.

4.1 Business Object Pattern Derivation

As depicted in Fig. 2, to derive microservice recommendations, BO pattern derivation
should be achieved in the third step. This is done using two algorithms. The first
algorithm derives the subtyping patterns as detailed in our previous work [12]. The
second algorithm (i.e., Algorithm 1) is detailed in this section. It derives inclusive
containment, exclusive containment and association patterns using eight steps.
As described in Section 2, BOs are often stored across several database tables. Thus,

in the first step, the BOS function is performed by Algorithm 1, which derives the set of
all BOs B of the system through the analysis of the database table relationships and their
data similarities, as described by Nooijen et al. [13]. In the second step, the algorithm
extracts all the operations OPS related to the system through static analysis. This mainly
involves the invocation of function STATOPEX which uses Abstract Syntax Tree (AST)
parsing to process the source code SC of the system to extract all the CRUD operations
related to the system. Generally, in join sql operations, database tables are referred to
by different names, other than their original names in the database (e.g., ‘cus’ is used
to refer to the ‘customer’ database table). As such, the details (TNM) related to such



tables (i.e., table names and alias names) are provided to the function for processing.
Function STATOPEX extracts all the operations related to the given system and uses
a mapping function to map table names to alias names (TNM) when there are join
operations. In the third step of the algorithm, function DYNOPEX is executed to extract
the operations from the execution logs (line 3). In the fourth step, function DYNTM
computes the execution time of each dynamic operation as per the log. This allows to
classify the operations which execute together, by analysing the execution sequences
and execution times in the logs. According to Andrews et al. [14], such classification
helps to derive relationships between operations. Apart from operation extraction, both
functions STATOPEX and DYNOPEX identify and store the database tables related to
each operation. In the fifth step, Algorithm 1 classifies the static operations extracted in
step three into association create (OPc

a) and association delete (OPd
a) operations (lines

6–13). Generally, in a database, there can be foreign key relationships among the tables
that relate to the same BO. Such relationships are not important for the containment
derivation. As such, in this step, the TBLS function extracts the tables Tk related to each
association operation opk. Next, after confirming that the tables in Tk do not relate to
the same BO, the algorithm adds the association operation to the respective set, either
OPc

a or OPd
a. Using a similar method, in the sixth step (line 14), the dynamic operations

are classified by the function DCLS into association create (OPc
da), association delete

(OPd
da), create (OPc

d), update (OPu
d), read (OPr

d), and delete (OPd
d) operations.

In the seventh step, Algorithm 1 identifies the exclusively contained, inclusively
contained and associatedBOs (lines 15–22). Exclusively containedBOs (γ) are identified
by verifying that two BOs are related by create (OPc

da) and delete (OPd
da
) association

operations, or related by update (OPu
da) and delete (OPd

da) association operations, or
related by create (OPc

d) and delete (OPd
d
) operations, or related by update (OPu

d) and
delete (OPd

d) operations while not having any other operations in OPc
a and OPd

a that
govern the relationship between bi and bj (lines 16–17). Similarly, inclusively contained
BOs (β) are derived if there are two BOs bi, bj in which bj is created or read before
updating the values in bi related to it while not having any delete association operations
in OPd

a and OPd
da between them (lines 18–19). Note that in inclusive and exclusive

containment derivation, the algorithm uses the time sequences related to the dynamic
operations to identify the execution patterns of the operations. For example, if there
is a create operation of a BO which is immediately followed by a create operation of
another BO, there is a possibility of exclusive containment given that the other criteria
match. The BOs which are not in the inclusive or exclusive containment relationships
are categorised as associated BOs (δ) (lines 20–21).
In the final step of the algorithm, function MANDOROP analyses the constructed

inclusive and exclusive relationships and verifies which BOs have mandatory or optional
relationship (line 23). Function MANDOROP requires information about foreign keys
and primary keys of database tables (TDATA), because different developers use different
patterns to define foreign key and primary key relationships. Based on the given keys,
mandatory relationship is identified if for every record in BO bi there is at least one
record in BO bj . However, if there are no records related to items of bi in bj , it is
considered as an optional relationship.



Algorithm 1: Computing BO relationship patterns
Input: Source Code SC, Execution Logs EL, Database Schema DB, Alias

names TNM, Database Table Data TDATA of an ES s.
Output: γ, β, δ are binary relations over BOs that capture exclusive

containment, inclusive containment and association, respectively, α
captures mandatory and optional types.

1 B = {b1 , . . . , bn} := BOS(SC, DB); // Identify BOs

2 OPS =
〈
op1 , . . . , opm

〉
:= STATOPEX(SC, TNM); // static analysis

3 OPD =
〈
opd1 , . . . , opdn

〉
:= DYNOPEX(EL, TNM); // dynamic analysis

4 OPT =
〈
opt1 , . . . , optn

〉
:= DYNTM(EL, TNM); // dynamic operation time

analysis

5 OPc
a := OPd

a := OPc
da := OPd

da
:= OPc

d := OPu
d := OPr

d := OPd
d

:= ∅;
6 for each k ∈ [1 ..m] do
7 if opk is an association operation then
8 Tk := TBLS(opk);
9 if � b ∈ B .Tk ⊆ b ∧ opk is a create operation then
10 OPc

a := OPc
a ∪ {opk}; // Identify an association create operation

11 else if � b ∈ B .Tk ⊆ b ∧ opk is a delete operation then
12 OPd

a := OPd
a ∪ {opk}; // Identify an association delete operation

13 end
14

〈
OPc

d,OPu
d,OPr

d,OPd
d
,OPc

da,OPd
da

〉
:= DCLS(OPD);

15 for each bi, bj ∈ B where i , j do
16 if ((∃op ∈ OPc

da . op ∈ OPd
da
) ∨ (∃op ∈ OPu

da . op ∈ OPd
da
) ∨

(∃opi
d ∈ OPc

d . ∃opj
d ∈ OPd

d
. opi

d = opj
d) ∨

(∃opi
d ∈ OPu

d . ∃opj
d ∈ OPd

d . opi
d = opj

d)) ∧ (�op ∈ OPc
a ∧ op ∈ OPd

a) then
17 Record in γ that bi, bj are exclusively contained;
18 else if ((∃opi

d ∈ OPc
d ∨ ∃opi

d ∈ OPr
d) ∧ ∃opj

d ∈ OPu
d ∪ OPc

d . opi
d < opj

d) ∧

(�op ∈ OPd
a ∧ �op ∈ OPd

da) then
19 Record in β that bi, bj are inclusively contained;
20 else
21 Record in δ that bi, bj are associated;
22 end
23 α := MANDOROP(TDATA, γ, β);
24 return γ, β, δ, α;
After obtaining the BO relationships using Algorithm 1 we provide that information

with the call graphs generated from system executions (see step 4 in Fig. 2) to our
genetic optimization algorithm, which is detailed in our previous work [15]. This al-
gorithm clusters the executed operations in the graphs based on their relationships to
the BOs while minimizing the communication overhead between different clusters (i.e.,
the number of calls between operations of different clusters would be minimal). These
clusters are then provided to the users as recommendations to create microservices to
optimize the system’s performance.



5 Implementation and Validation
To demonstrate the applicablity of the patterns for re-engineering of legacy software
systems, we developed a prototype5 which uses the patterns to discover prospective mi-
croservices from two enterprise systems: Dolibarr6 and SugarCRM7. The validity of the
discovered microservices was evaluated by comparing their performance against the en-
terprise systems, considering five system characteristics, namely, scalability, availability,
execution efficiency, cohesion and coupling.
A detailed description of the experiments conducted with Dolibarr is presented here.

(The experimental details related to another case study using SugarCRM can be found in
our technical report [20]). The Dolibarr system contains 10,735 files and around 3,000
attributes divided between 250 tables. We performed the static analysis of the Dolibarr
source code and identified the BOs related to the system. Meanwhile, Selinium8 scripts
were used to perform dynamic analysis and generation of execution sequences. For
Dolibarr we performed executions related to ‘product purchase and sales’, covering
all the major functionalities. The execution logs were captured by customizing the log
generation functionality of the system. The logs were then converted to XES file format
and analyzed using the process mining tool Disco9, as depicted in Fig. 3, to generate
the call graph. The call graph generated for Dolibarr contained 301 unique nodes. Each
node in the call graph represents a unique operation performed on database tables by the
system and edges between the nodes represent the number of calls between the nodes.
The execution graphs and the identified BOs were fed into our prototype to discover
microservices and their interactions, as depicted in Fig. 3.

Structural
Analysis

Dynamic
Analysis

Graph
Generation

BO 
Derivation 

XES
files

Fig. 3.Microservice discovery steps with related tools.

Discovered MSs: Based on the provided data, the prototype managed to identify
41 different business objects related to Dolibarr, for example ‘User’, ‘Shipment’, ‘El-
ement’, ‘ECM’, ‘Order’, ‘Third-party’, ‘Account’, and ‘Product’. Furthermore, system
execution analysis led to the identification of mandatory exclusive containment rela-
tionship between ‘Order’ and ‘ECM’, and ‘Element’ and ‘Shipment’ and mandatory
inclusive containment relationship between ‘Order’ and ‘Thirdparty’, ‘Shipment’ and
‘Thirdparty’, and ‘Order’ and ‘Product’ BOs. Also, the prototype identified two subtypes
related to shipments named ‘At-Store Reclamation’ and ‘Generic Transporter’. The rela-
tionship between ‘User’ and ‘Order’ was identified as an association relationship. Based

5 https://github.com/AnuruddhaDeAlwis/BORelationshipDerivation.git
6 https://www.dolibarr.org/ 7 https://www.sugarcrm.com/ 8 https://www.seleniumhq.org/
9 https://fluxicon.com/disco/



on the containment and association relationship patterns and the execution sequences
the prototype derived eleven microservice recommendations for Dolibarr.

Validation Process: The validation of the microservice recommendations was con-
ducted in two steps. First, we evaluated the improvement of cohesion and coupling of
different modules when clustering the classes based on recommendations provided by
the prototype. This was achieved through measuring the Lack of Cohesion (LOC) and
Structural Coupling (StrC) of the clusters, as described by Candela et al. [18]. We cal-
culated the corresponding values for the enterprise system by clustering the classes into
folders while preserving the original package structure, and then calculated the same
values for the systtem with microservices. We have only considered six microservices
in these calculations out of 11 recommendations. The obtained values are reported in
Tables 1 and 2.
Then, we evaluated the system’s performance improvement. In order to validate

performance, we hosted the original Dolibarr system on a AWS cloud. 10 We used 2
EC2 instances which individually contained one virtual CPU and memory of 1GB. The
data related to the system was hosted in a MySQL relational database on AWS, which
had one virtual CPU and storage of 20GB. This implementation can be seen as the
‘Enterprise System’ depicted in Fig. 4. This system was then tested against 100 and 200
executions generated by 4machines simultaneously, simulating customer requests, while
recording their total execution time, average CPU consumption, and average network
bandwidth consumption. For Dolibarr, we simulated the functionality related to product
purchase and sales, using Selenuim11 scripts which executed the system similar to a
real environment. The values we obtained for Dolibarr enterprise system are detailed
in Table 3.

Region

Availability
Zone 1

Availability 
Zone 3

Amazon Database 
Migration Service

Availability
Zone 2

Region

Availability
Zone 1

Availability 
Zone 3

Availability
Zone 2

Enterprise System Microservice System

Fig. 4. System implementation in AWS.

Next, we introduced the microservices we have identified to the system to evaluate
the effectiveness of the patterns. First, we evaluated the effectiveness of the ‘Subtyping’
pattern. We conducted two experiments. The first experiment was conducted by intro-
ducing a single microservice which contains both ‘At-Store Reclamation’ and ‘Generic
Transporter’ BOs and a subset of the operations related to them. The second experiment
was conducted by introducing individual microservices for ‘At-Store Reclamation’ and

10 https://aws.amazon.com/ 11 https://www.seleniumhq.org/



‘Generic Transporter’ BOs and the subsets of the operations related to them. Similarly
two experiments were conducted regarding inclusive containment of ‘Order’ and

Table 1. Dolibarr ES vs MS System (Lack of Cohesion).
System Type thirdparty order ecm shipment product user
Original ES 62 17 4 7 217 17
MSs 42 17 4 7 81 17

Table 2. Dolibarr ES vs MS System (Structural Coupling).
System Type thirdparty order ecm shipment product user
Original ES 23 27 7 20 34 18
MSs 22 27 7 20 26 18

Table 3. Legacy Enterprise System Result for Dolibarr.
System Type No of

Executions
No of

Packets Sent
Ex.

Time (s)
Avg CPU Util

(EC2)
Avg CPU
Util (DB)

Avg Network
(Kb/s)

Original ES 100 136452 8220 9.535 2.37 47.31
Original ES 200 163270 17400 8.805 2.13 45.31

Table 4. Dolibarr System. (1) All Subtypes in one MS. (2) Subtypes in separate MSs.
System Type No of

Executions
No of
Packets
Sent

Ex.
Time
(s)

Avg CPU
Util (EC2)

Avg CPU
Util (DB)

Avg Network
(Kb/s)

ES & Single MS (1) 100 139860 8400 5.288 1.71 30.585
ES& Single MS (1) 200 162099 16740 4.498 1.665 19.55
ES & Multi MS (2) 100 124188 7860 8.543 1.597 28.73
ES & Multi MS (2) 200 168990 15720 8.345 1.64 26.57

Table 5. Dolibarr System. (1) Exclusive BOs in one MS. (2) Exclusive BOs in separate MSs.
System Type No of

Executions
No of
Packets
Sent

Ex.
Time
(s)

Avg CPU
Util (EC2)

Avg CPU
Util (DB)

Avg Network
(Kb/s)

ES & Single MS (1) 100 110789 7980 5.045 1.67 26.75
ES& Single MS (1) 200 181828 15720 5.228 1.55 21.71
ES & Multi MS (2) 100 117912 8160 6.127 1.87 25.77
ES & Multi MS (2) 200 165273 16020 5.613 2.11 18.48

Table 6. Dolibarr System. (1) Inclusive BOs in one MS. (2) Inclusive BOs in separate MSs.
System Type No of

Executions
No of
Packets
Sent

Ex.
Time
(s)

Avg CPU
Util (EC2)

Avg CPU
Util (DB)

Avg Network
(Kb/s)

ES & Single MS (1) 100 95499 7860 5.04 1.75 25.795
ES& Single MS (1) 200 135182 15780 5.05 1.75 21.695
ES & Multi MS (2) 100 105996 7920 3.702 1.907 25.81
ES & Multi MS (2) 200 136371 15720 2.633 1.653 14.58



Table 7. Dolibarr System. (1) Association BOs in one MS. (2) Association BOs in separate MSs.
System Type No of

Executions
No of
Packets
Sent

Ex.
Time
(s)

Avg CPU
Util (EC2)

Avg CPU
Util (DB)

Avg Network
(Kb/s)

ES & Single MS (1) 100 109052 8220 5.123 1.71 26.655
ES& Single MS (1) 200 124343 18060 3.1 1.415 13.275
ES & Multi MS (2) 100 227010 8280 4.318 1.987 39.67
ES & Multi MS (2) 200 252591 16140 3.017 1.837 21.14

Table 8. Legacy vs MS System characteristics comparison for Subtyping.
Campaign Type Scalability

[CPU EC2]
Scalability
[CPU DB]

Scalability
[Network

DB]

Avail-
ability
[100]

Avail-
ability
[200]

Effi-
ciency
[100]

Effi-
ciency
[200]

Original ES 3.458 3.366 3.586 99.27 99.31 1.000 1.000
ES & Single MS 2.915 3.336 2.19 99.29 99.29 0.979 1.039
ES & Multi MS 2.871 3.019 2.72 99.24 99.24 1.046 1.107

Table 9. Legacy vs MS System characteristics comparison for Exclusive Containment.
Campaign Type Scalability

[CPU EC2]
Scalability
[CPU DB]

Scalability
[Network

DB]

Avail-
ability
[100]

Avail-
ability
[200]

Effi-
ciency
[100]

Effi-
ciency
[200]

Original ES 3.458 3.366 3.586 99.27 99.31 1.000 1.000
ES & Single MS 2.45 2.195 1.919 99.25 99.24 1.03 1.107
ES & Multi MS 2.511 3.103 1.972 99.27 99.26 1.007 1.086

Table 10. Legacy vs MS System characteristics comparison for Inclusive Containment.
Campaign Type Scalability

[CPU EC2]
Scalability
[CPU DB]

Scalability
[Network

DB]

Avail-
ability
[100]

Avail-
ability
[200]

Effi-
ciency
[100]

Effi-
ciency
[200]

Original ES 3.458 3.366 3.586 99.27 99.31 1.000 1.000
ES & Single MS 2.85 2.847 2.394 99.24 99.24 1.045 1.103
ES & Multi MS 2.17 2.655 1.729 99.24 99.24 1.037 1.107

Table 11. Legacy vs MS System characteristics comparison for Association.
Campaign Type Scalability

[CPU EC2]
Scalability
[CPU DB]

Scalability
[Network

DB]

Avail-
ability
[100]

Avail-
ability
[200]

Effi-
ciency
[100]

Effi-
ciency
[200]

Original ES 3.458 3.366 3.586 99.27 99.31 1.000 1.000
ES & Single MS 2.56 3.503 2.108 99.28 99.34 1 0.964
ES & Multi MS 2.381 3.157 1.819 99.28 99.26 0.993 1.078

‘Thirdparty’ BOs and association of ‘Product’ and ‘User’, for which, firstly, a single mi-
croservice was created to manage both BOs and, secondly, separate microservices were
created to manage each BO. The results obtained for these experiments are summarised
in Tables 4, 6 and 7. Each microservice was hosted on an AWS elastic container service
(ECS), which has two virtual CPUs and a total memory of 1GB, as depicted on the



right side of Fig. 4. The data related to the BOs of each microservice was stored in one
MySQL relational database instance with one virtual CPU and total storage of 20GB.
Next, the executions were performed on ES again. Since microservices are extended
parts of the enterprise system, in these executions, the enterprise system used API calls
to pass the data to the microservices and the microservices processed and sent back
the data to the enterprise system. The data in the microservice databases and enter-
prise system database was synchronized using the Amazon database migration service.
Again, we recorded the total execution time, average CPU consumption, and average
network bandwidth consumption for the entire system (i.e., enterprise system integrated
with microservices). Since exclusive containment suggests co-locating contained BOs
in a single MS, we evaluated the effectiveness of this using two experiments. First, we
implemented one microservice to manage ‘Order’ and ‘ECM’ BOs with a subset of their
operations in a single container and obtained the execution results. Then, we created
a separate microservices to manage ‘Order’ and ‘ECM’ and conducted the experiment
again. The results obtained for this experiment are summarised in Table 5.
Based on the attained values, we calculated the scalability, availability, and execution

efficiency of the different combinations, the results are summarized in Tables 8–11.
Scalability was calculated according to the resources and their usage over time, as
described by Tsai et al. [16]. In order to determine availability, first we calculated the
time taken to process 100 packets when a particular microservice is not available. Then,
we measured the difference between the total uptime and total downtime, as described
by Bauer et al. [17]. Efficiency gain was calculated by dividing the total time taken by
the legacy system to process all requests by the total time taken by the corresponding
microservice system.

Experimental Results: As described by Tsai et al. [16], the lower the number the
better the scalability. Thus, it is evident from Tables 8, 10 and 11 that developing
separate microservices to manage BOs which have subtype, association and inclusive
containment relationships achieve better scalability than creating single microservices to
manage such BOs.When comparing availability, there is not much gain. However, better
execution efficiency for subtypes, association and inclusively contained microservices
were achieved when they are developed as separate microservices. When comparing
scalability, availability and execution efficiency for exclusively contained BOs, it is
evident that they achieved better results when the microservices were co-located in
the same container (see results for single microservice and multiple microservices in
Table 9). These results affirmed that the patterns that our work suggested for subtyping,
association, inclusive containment and exclusive containment relationships work well
when developing microservices.
The lower the lack of cohesion and structural coupling numbers the better the co-

hesion and coupling of the system [18]. As such, it is evident from Tables 1 and 2
that the microservices derived from the Dolibarr system achieved better cohesion and
coupling values than the legacy system. Hence, the obtained results have affirmed that
the microservices extracted based on the patterns described in Section 3 led to microser-
vices which could provide the same services to users while preserving overall system
behaviour and achieving higher scalability, availability, efficiency, and cohesion, and
lower coupling.



6 Related Work

Architectural and design conceptions of microservices have emerged through practi-
tioner reports [1] and the textbooks by Newman [2] and Fowler [3], and have contributed
to ongoing developments of microservice architectures. To date, general properties
which are widely accepted for microservices as distributed and fine-grained software
components are high scalability, high availability, high integrity, strong cohesion, loose
coupling, and eventual consistency [2]. Furthermore, microservices have been charac-
terised through agile units of software development, which can be separately developed,
deployed, and composed.
Concerning the essential structure of a microservice architecture, the domain-driven

design principle (DDD) [4] has been popularized through the widely cited references
by Newman [2] and Fowler [3]. According to DDD, each service-based software com-
ponent encapsulates all operations of objects, which in SOA based enterprise systems
corresponds to business objects (BOs). Accordingly, patterns have been proposed for
microservices by Chris Richardson such as ‘database per service’ and ‘saga’ [19].
However, to date, there are no clear definitions that help to refine SOA components
which manage distinct BOs of domains, containing encapsulated CRUD operations of
the objects [5], into microservices which recommend decomposing BOs for support of
fine-granular functionality. Our work presented a refinement of the design strategy for
SOA components such that the system operations are split based on four fundamental
object relationships, namely, subtyping, association, inclusive containment, and exclu-
sive containment. Considering such BO relationships and system execution patterns, we
have conducted research here and in previous work [12, 15] and demonstrated that BO
relationships could be used in the microservice derivation process to achieve prominent
outcomes, such as high scalability, availability, and processing efficiency.

7 Conclusion
This paper presented four microservice patterns, namely object association, exclusive
containment, inclusive containment and subtyping for ‘greenfield’ (new) development
of software while demonstrating the value of the patterns for ‘brownfield’ (evolving)
developments by identifying prospective microservices using prototypes we developed
for two enterprise systems, Dolibarr (Section 5) and SugarCRM [20]. The conducted
experiments confirmed that our patterns provide good suggestions for better microser-
vice development while obtaining desirable characteristics such as high cohesion, low
coupling, high scalability, high availability, and processing efficiency. The patterns pre-
sented herein could be used for further extended and refined pattern development, for
example by taking into account the operation subtypes (i.e., create, read, update and
delete). Furthermore, considerations for software modularization based on class clus-
tering and method clustering should be considered as future work for microservice
derivation.
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